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Abstract. The wind power plant designs are different
from the design of other conventional power plants such
as hydropower plants, thermal power plants, and nu-
clear power plants because the input fuel of these types
of power plants is controllable. Wind power plants de-
pend on the speed of wind energy. Therefore, the prob-
lem of optimizing the location of turbines in a wind
farm to achieve maximum annual energy output (AEP)
is of great interest. In this paper, the Stochastic Frac-
tal Search (SFS) algorithm is proposed to optimize the
arrangement of turbines in the wind farm to minimize
the wake effect so that the wind farm achieves the max-
imum generating capacity and the highest power factor
(CF). SFS represents a significant advancement in op-
timization techniques, offering robust, adaptable, and
efficient solutions to complex problems like wind farm
layout optimization. Its innovative use of fractional
dynamics and stochastic processes distinguishes it from
traditional methods, providing superior performance in
many scenarios. The proposed method was tested on
a standard case with three types of turbines with dif-
ferent capacities of 850kW, 1000kW, and 1500kW to
confirm the suitability of the algorithm and select the
most appropriate turbine type. The results of AEP and
wake loss calculated by the SFS algorithm were superior
compared to those obtained by the PSO algorithm for
these three turbine types. The turbine with the highest
CF will be selected for application in the wind farm.
Therefore, the proposed SFS algorithm can be a poten-

tial method to deal with the problem of optimization of
wind farm layout.

Keywords
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1. Introduction

The primary fuel sources for power plants such as coal,
oil, and gas are gradually depleted. To ensure a stable
power source and minimize the impact on the environ-
ment, countries are interested in developing sustainable
energy. Using renewable energy sources such as wind
energy with great potential in many countries. In 2021,
wind power capacity rose by 93.6 GW, and the total
global wind power capacity improved 837 GW, an im-
provement of 12% over the previous year. NZE2050’s
goal in the next 5 years, the world needs more than
86 GW of wind power annually and the total global
wind power capacity is about 469 GW. By 2050, the
world is expected to install 2TW of wind power and
offshore wind will reach 19% by 2024 [1]. To design a
wind farm, there are a number of issues worth consider-
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ing and most of them have been extensively studied in
distinctly individual ways such as turbine placement,
research on wind characteristics, analyze the interac-
tion between wind turbines (wake effect), design an-
cillary items (turbine transport routes, electrical cable
systems, turbine foundations), reliability, economic is-
sues, environmental impact assessment [2]. The wake
effect is a complex and interesting problem in solving
the problem of wind turbine layout to achieve maxi-
mum power [3]. he most popular models built by N.O.
Jensen [4] and improved by Katic [5]. Jensen treated
the influence area behind the turbines as a wind dis-
turbance and ignores the eddy effect [6], which affected
only the region near the turbines. Two types of wake ef-
fect models have been presented: Computational fluid
dynamics (CFD) model [7, 8] and analytical model
[9, 10, 11, 12]. Recently, several methods have been
proposed to calculate the wake effect such as the bi-
nary matrix method based on the Jensen model [13],
the wake effect model combined with the multi-turbine
effect has been proposed for energy loss analysis [14].

Many works have presented different methods to
solve problems related to the optimal position of wind
turbines such as Changshui et al. [15] have proposed
the “lazy greed” algorithm used to optimize the wind
turbines. Zhang Changshui et al. [16] presented a
"submodule" nature for turbine placement in wind
farms based on the Jensen wake model, Serrano et
al. [17] applied by iterative method to increase the
distance between turbines in offshore wind farm in or-
der to decline the wake effect. In addition, there are
a number of studies on determining the optimal loca-
tion to install power systems for wind farms such as
installing substations and cable systems [18, 19]. The
study of wind speed reduction through the turbine is
also a complex process involving the determination of
the turbine location, wind conditions, and wind tur-
bine control methods [20]. The initial data for calcu-
lating the turbine power is the measured wind speed
and it is statically represented by the Weibull distribu-
tion [21, 22, 23, 24].

Currently, there are commercial software for wind
energy efficiency assessment and wind farm design, the
most popular one being WAsP [25]. The main function
of this software is the assessment of wind resources af-
ter analyzing the measured wind data set. WAsP an-
alyzes wind resources by analyzing wind flows using
a CFD model. In addition, the WAsP software pro-
vides various tools to design the wind farm, such as
an assessment of wind power production considering
the wake effect, analyzing wind speed, wind distortion,
and wind turbulence. The windPRO software involves
optimizing the wind farm’s turbine layout for maxi-
mum power [26]. On the other hand, this software
also has tools for environmental impact assessment and
layout of turbines to respond to noise. Recently, meta-

heuristic optimization algorithms have been increas-
ingly applied to engineering problems such as Evolu-
tionary Strategy, Genetic Algorithms, Dolphin Echolo-
cation, Cuckoo Optimization Algorithm, Artificial Bee
Colony, Ray Optimization, Gray Wolf Optimizer, Col-
liding Bodies Optimization, and Chaotic Swarming of
Particles [27]. These algorithms have proven them-
selves to be very competitive compared to modern
hyper-simulation algorithms as well as other conven-
tional methods.

In this paper, an optimal search algorithm is pro-
posed, which is based on a random fractal search to
solve the problem of optimizing wind farms to achieve
maximum power energy. The mathematical model of
the problem includes a fitness function with the goal of
obtaining maximum energy and the constraints of the
turbine. To check the feasibility and efficiency of the
proposed algorithm, the results calculated by SFS will
be compared with the results calculated by PSO and
simulation results by windPRO software.

2. Problem and Formulation

2.1. Assumptions

To develop a general model for the problem of opti-
mization of wind farm layout, a set of assumptions is
considered in this paper.

1. The turbines have the same characteristics.

2. The same number of turbines for the case stud-
ies 3. The turbines are arranged onshore in two-
dimensional (x,y).

4. Wind speed (v) follows Weibull distribution [20,
23, 24, 28].

The Weibull distribution is commonly used in wind
energy analysis to model wind speed data because it
can provide a good fit for the wind speed probability
distribution. The Weibull distribution is characterized
by two parameters: shape (k) and scale (c). These pa-
rameters determine the shape and scale of the distri-
bution, respectively. The probability density function
of the Weibull distribution is given by:

f(v, k, c) =
k

c

(v
c

)k−1

e−(
v
c )

k

(1)

where, v is the wind speed; k is the shape parameter;
c is the scale parameter.

2.2. Wake effect model

The wind speed changes after passing through the up-
stream wind turbines, which affects the downstream
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Fig. 1: A wind turbine inside the cone of another turbine [29].

wind turbines due to reduced wind speed and increased
turbulence and is called the wake effect. This effect will
affect the operation and energy production of wind tur-
bines in the turbulence zone. Therefore, modeling the
wake effect plays an important role in determining the
location of turbines in a wind farm. The wake effect
becomes more significant when the wind farm has mul-
tiple turbines. A considered turbine may be affected
by wake effects from many other wind turbines [3].

The wake effect model is a crucial component in wind
farm layout optimization. It simulates the interaction
between wind turbines in a wind farm, accounting for
the reduction in wind speed and turbulence caused by
the wake of upstream turbines. A fairly simple wake
effect model with extensive linear assumptions and a
decaying wind speed that depends only on the distance
behind the turbine was developed by N.O. Jensen [3].
Jensen treats the post-turbine influence as a wind dis-
turbance and ignores the eddy effect, which affects only
the region near the turbine.

The angle βij , (0 ≤ β ≤ π), between the vector orig-
inating from the top of the hypothetical cone to the ith

turbine and the jth turbine, is calculated as [29]:

βi,j =cos−1 (xi − xj) cos θ + (yi − yj) sin θ +R/κ√(
xi − xj +

R
κ cos θ

)2
+
(
yi − yj +

R
κ sin θ

)2


(2)

The wind turbine jth is inside the wake of turbine ith,
if turbin jth is inside the cone. The distance between
turbine ith and jth projected on the wind direction
θ, dij , is expressed as follows [29]:

di,j = |(xi − xj) cos θ + (yi − yj) sin θ| (3)

The fall in wind speed at a certain location d is [29]:

Vdef = 1− Vdown

Vup
=

1−
√
1− Ct(

1 +
κdi,j

R

)2 (4)

where, Ct is the thrust coefficient of turbine; d is the
distance between turbine i and turbine j as a projec-
tion along with wind direction; k is the entrainment

constant (decay coefficient) [30], which is empirically
calculated as:

k =
0.5

ln
(

H
z0

) (5)

where, H is the hub height, and z0 represents the sur-
face roughness of the terrain. k is 0.075 for land areas
and 0.04 for offshore areas [31]; di,j is the distance be-
hind the turbine considering wind direction θ.

Due to the wake effect (when a turbine is affected by
multiple turbines in front) the wind speed is reduced
[29]:

Vdefi =

√√√√ N∑
j=1,j ̸=i,βi,j<α

[
1−

√
1− Ct

(1 + κdi,j/R)
2

]
(6)

It is easy to observe that Vdefi is a function of wind
direction (θ) and all turbine positions. It is shown that
only the scaling parameter c of the Weibull distribution
will be affected by the wake loss [6]. The wake effect is
statistically described as follows [32]:

c′(θ) = c(θ).(1− Vdefi) (7)

2.3. Wind turbine characteristics

The exact pattern of turbine characteristics is very im-
portant in guessing wind power energy. There have
been many approaches to the introduction of wind tur-
bines, including approximate polynomials [33]. In this
article, the 9th degree polynomial model is applied to
calculate the turbine characteristic model because this
is the most suitable observed model.

f(v) = p0 + p1v + p2v
2 + p3v

3 + p4v
4 + p5v

5+
+p6v

6 + p7v
7 + p8v

8 + p9v
9 (8)

The standard case is applied to the problem with
turbine capacities of 850kW, 1000kW and 1500kW as
shown in Table 1.

Figures 2, 3, and 4 show the comparison between the
polynomial model and the actual wind turbine charac-
teristics proposed in this paper. The characteristics of
the model are observed to be very similar to those of
the actual turbine.

The wind turbine characteristics are restated as fol-
lows:

f(ν) =

 0, vi < vcut in, vi > vcut out
f(x) inEq.(8), vcut in ≤ vi ≤ vcut out
Prated, vrated ≤ vi ≤ vcut out

(9)
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Tab. 1: Types of turbines proposed for wind farms.

Type of Turbine. GAMESA G52/850 NORDEX N-54/1000 VESTAS V63/1500
General data

Model: G52/850 N54/1000 V63/1500
Rated power 850 kW 1,000 1,500

Rotor diameter 52 m 54 63.6
Swept area 2,124 m² 2,291 3,177

Specific area 2.5 m²/kW 2.3 2.12
Number of blades: 3 3 3

Rotor
Minimum rotor speed 19,44 14 rd/min -
Maximum rotor speed 30,8 rd/min 21,5 rd/min 22,9 rd/min

Cut-in wind speed 4 m/s 3,5 m/s 4 m/s
Rated wind speed 16 m/s 15,5 m/s 16 m/s
Cut-off wind speed 25 m/s 25 m/s 25 m/s

Generator
Type ASYNC ASYNC ASYNC

Number 1 1 1
Maximum speed 1900 rd/min 1513 rd/min 1650 rd/min

Voltage 690 V 690 V 690 V

Fig. 2: GAMESA G52/850 turbine characteristics.

Fig. 3: NORDEX N-54/1000 turbine characteristics.

2.4. Wind power model

1) Wind Model

Wind model becomes very important in estimating
wind power production. In wind pattern, wind speed
and wind direction are two parameters that need to
be carefully considered because they affect the power
output of the wind turbine. The wind speed is usually
described by the Weibull distribution and the wind di-
rection is expressed by the probability of each sector of
the wind rose [34].

This study proposes to use a 12-sector wind rose be-
cause it is widely used for wind farm design.

Fig. 4: VESTAS V63/1500 turbine characteristics.

2) Wind Power Output

The energy production of the turbine is shown in (10)
[35]:

E(P, θ) =

∞∫
0

f(v)p(v, c(θ), k(θ))dv (10)

where p(v, c(θ), k(θ)) is the Weibull probability density
function of wind speed.

Calculation of the energy produced by a turbine for
wind direction from 0o to 360o is presented as follows
[29]:

E(P ) =

360∫
0

p(θ)dθ

∞∫
0

f(v)p(v, c(θ), k(θ))dv (11)

The numerical integration method will be applied to
calculate the wind power output of the wind farm. The
wind power output in each wind direction θ is combined
as follows [29]:

E(P ) =
h∑

i=1

fi(θ)
∞∫
0

f(v) ki(θ)
c′i(θ)

(
v

c′i(θ)

)(ki(θ)−1)

e
−
(

v
c′i(θ)

)ki(θ)

dv

(12)
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3) Objective Functions

This article presents a method for optimizing the ar-
rangement of turbines in a wind farm to maximize an-
nual energy output:

Obj = max
[∑

E (P )
]

(13)

3. Methodology

The SFS algorithm is a metaheuristic optimization al-
gorithm inspired by the principles of fractal geometry
and randomness. It’s designed for solving complex op-
timization problems and is particularly useful for global
optimization. SFS combines random sampling with
self-similarity, creating a rich search landscape for find-
ing the global optimum, This is based on the simulation
of a dielectric breakdown process, so it becomes a suit-
able search engine for solving optimization problems
at a general level. The procedure of the algorithm is
divided into two processes as diffusive and update [36].

In the first phase, to increase search chances, each
point will diffuse around the current location in re-
sponse to growth characteristics. In the second phase,
the simulation algorithm will work for an individual to
update its location based on the location of other in-
dividuals, the second phase uses some random method
such as update processes.

An outline of the Stochastic Fractal Search Algo-
rithm works:

Step 1. Initialization: Initialize the search space
and create an initial solution point within the defined
bounds.

Step 2. Self-Similarity: The algorithm generates new
solution points by perturbing the current solution using
a random vector with a specific structure based on a
fractal pattern.

Step 3. Evaluation: Evaluate the objective function
for each generated solution point.

Step 4. Selection: Choose the best solution point
among the current one and the newly generated ones
based on the objective function values. The selected
solution becomes the current one.

Step 5. Termination: The algorithm repeats steps
2-4 for a specified number of iterations or until conver-
gence criteria are met.

Step 6. Global Optimum: The algorithm aims to
converge to the global optimum by exploring the en-
tire search space through its self-similarity and ran-
domness.

3.1. Fractals

Some common methods are used such as an iterative
functional system, L system, finite division principle,
and random cracking to generate fractal shapes. These
meta-heuristic algorithms are based on fractal features
as a search algorithm that achieves good results both
in terms of accuracy and convergence time [36].

1) Random fractals

Random processes such as Gaussian walk, fractal struc-
ture, Levy flight, osmotic cluster, Brown tree and
Brownian motion trajectories are used to reduce the
number of iterations of the algorithm and generate the
stochastic fractal. For simplicity, consider forming a
sequence with the initial term located at a random po-
sition. Then random particles are formed around the
original particle and cause diffusion. The random walk
algorithm is applied to simulate the diffuser. The par-
ticles produced by diffusion stick to the particles that
make it up and form a group of particles. During the
formation, the probability of particles being pulled to
the edge is greater than that of particles entering the
middle. Because of this property, it leads to a branched
cluster as shown in Figure 6 [36].

2) Dielectric breakdown

Research on dielectric breakdown characteristics found
that complex models can be applied to simulate the
branching tendency of dielectric puncture. Examples
are flashover and lightning. Niemeyer et al. [32] intro-
duced dielectric breakdown using a random model and
showed that branch discharge patterns follow fractal
characteristics. This model is relatively similar to the
new Diffusion Limited Aggregation (DLA) model.

3.2. Fractal search

1) Methodology of SFS

The core methodology of the SFS algorithm revolves
around two main components: fractional calculus and
stochastic search.

2) Fractional Calculus

- Fractional Order: Utilizes non-integer orders of dif-
ferentiation and integration, providing a flexible frame-
work to capture system dynamics with memory effects.

- Memory Effect: Helps in retaining historical search
information, which guides the current search process
more effectively.
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- Fractal search applies the following three hypothe-
ses:

- Each point will have an electric potential energy.

- Each point will diffuse and randomly generate a
number of points.

- In each generation only keep some of the best
points.

Assume P (1 ≤ P ≤ 20) is the number of particles
examined. Initially, each Pi particle is randomly placed
in the search area with the same energy Ei as follows:

Ei =
E

P
(14)

where, the maximum energy is E.

To optimize the fission, each particle will be diffused
in each generation and generate a limit by the Levy
flight. In this model, use Levy flight for the DLA de-
velopment model. The Lévy flight is described by (13)
as follows:

L(x) =
1

π

∞∫
0

(
e(−αq−β) cos(qx)

)
dx (15)

where, α is the distribution coefficient; β is the distri-
bution index, 0 < β ≤ 2.

Figure 7 shows the diffusion process that creates new
particles around the original particle with random po-
sitions.

As a result of the diffusion process, a number of par-
ticles are produced q (1 ≤ q ≤ the maximum diffusion
number (MDN)). To generate each of these particles,
both the Levy flight and Gaussian are applied as for-
mulas (12) and (13):

xq
i = xi + αq

i ⊗ Levy(λ) (16)

xq
i = xi + β ×G (17)

where G = Gaussian(Pi, |BP | − (γ × BP − γ′ × Pi);
β = log(ge)

ge
; ge is the number of generations; BP(Best

Point) is the best score; γ and γ
′ ∈ [0, 1].

To get a good score for both the Lévy flight method
and the Gaussian distribution, the fractal search
method randomly uses both methods. Because the
Lévy distribution gives a fast convergence algorithm,
and the Gaussian distribution gives better results.

Since the approaches all depend on stochastic pro-
cesses, fast absorption cannot be guaranteed. There-
fore, α is an important parameter for fast convergence.
Two formulas are considered for α, one for a broader
search, and the other for a higher precision search:

αi =
U − L

(ge × log (Ei))
ε (18)

where, Ei is the energy of the Pi; U is upper bound
and L is lower bound of the search area; ε is usually
taken as 3/2.

After the diffusion has determined the position of the
particles, the energy distribution between the particles
is created. Particles with better target values will have
a higher energy distribution. Each diffuse particle has
a target value Fi where i = 1, 2, . . . , q. The energy is
distributed to the points as follows:

Ej
i =

[(
Fi

Fi +
∑q

k=1 Fk

)]
× Ei (19)

where, Fi is the point before diffusion.

Because of the complex diffusion, only some of the
best particles will be selected for the next. The energy
of the discarded particles will be distributed to the se-
lected particles and new particles will be created.

The total energy of the removed points is Φ; µ is the
ratio of the energy distribution between the selected
points and the newly created points. The energy dis-
tributed to the remaining points is as follows:

Et+1 = Et

((
Ft/

ξ∑
k=1

Fk

)
× Φ

)
× µ (20)

where Et+1 and Et is the energy of the tth point after
and before the energy distribution, ξ is the total of
number points in the iteration. For each diffuse point,
the number of newly formed and randomly positioned
points in the search space is calculated as follows:

υ =
log(Ne)

log (MDN)
(21)

where, Ne is the number of eliminated points.

The energy distribution for each produced point is
equal:

E′
c =

Φ(1− µ)

υ
, c = 1, 2, ..., υ (22)

3.3. Stochastic Fractal Search
algorithm

SFS is a modern optimization algorithm designed to
address complex, multi-dimensional optimization prob-
lems that traditional methods often struggle to solve
effectively. These problems are prevalent in various
fields, including engineering, finance, and artificial in-
telligence, where finding the global optimum in a highly
nonlinear and multimodal landscape is crucial. SFS is
inspired by the natural process of fractal growth, char-
acterized by self-similarity and recursive pattern gen-
eration. The methodology involves two main phases:
diffusion and update [36].
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Generate candidate solutions by creating random
walks influenced by the fractal dimension. Because
Fractal Search does not exchange information between
particles. Therefore, SFS adds an update process to
balance the accuracy and convergence time of the al-
gorithm.

Lévy flight and Gaussian walking method have been
applied to generate new particles by diffusion process
[27]. The Gaussian steps involved in the diffusion phase
are calculated as follows:

Gaussian_walk1 = G(µBP , σ) + (ε×BP − ε′ × Pi)
(23)

Gaussian_walk2 = G(µP , σ) (24)

where, ε and ε
′

are randomly distributed; µBP and σ
are Gaussian parameters; µP and σ are the second two
Gaussian parameters.

The standard deviation is as follows:

σ = |β × (Pi −BP )| (25)

The single search method is applied to reduce the
size of the Gaussian walk log(ge)/ge, so the convergence
time is faster.

At initialization, points are randomly initialized
based on upper and lower bound constraints. Initialize
the jth point, Pj as follows:

Pj = L+ ε(U − L) (26)

where, ε is a random distribution and is limited to
the interval [0,1]. The points will probe around the
current position to consider the search space in the
diffusion process. Besides, two statistical processes are
performed for a better spatial search. The first statistic
is performed on each vector, and then the next statistic
is applied on all points.

The first statistical process, rank all points by (27),
N is the total number of points in group. Then each
ith point is assigned a probability value as follows:

Pai =
rank(Pi)

N
(27)

Equation (27) means that the better the score, the
greater the probability of that score. It helps the bad
points increase the chance to change position. The
chances of finding a better solution will improve in the
next generation.

P ′
i (j) = Pr(j)− ε× (Pt(j)− Pi(j)) (28)

where, P
′

i is the new point; Pr and Pt are randomly
chosen points from the group.

(a) The flowchart of the SFS algorithm.

(b) The diffusion process of the SFS algorithm.

Fig. 5: The SFS algorithm flowchart and Diffusion process al-
gorithm flowchart [36].

This property is intended to better explore and sat-
isfy the diverse nature of the algorithm based on two
statistical processes [36]. All the points obtained from
the previous process will be re-ranked according to (27)
before the second process is performed. Similar to the
first process, if the P ′

i satisfies the condition Pai < ε,
the position is changed according to (29).

Pi
′′ = Pi

′ − ε̂(Pt
′ −BP ) | ε′ ≤ 0.5

Pi
′′ = Pi

′ − ε̂(Pt
′ − Pr

′) | ε′ > 0.5
(29)

where, P ′
r and P ′

t are randomly chosen points from the
first process. The P”i is new point if its objective func-
tion value is better than P ′

i .

Step 1: Initialize population size: N , MDN ,
maxiter, and G.

Step 2: Find the best score (BP) by calculating the
fitness function.

Step 3: Check condition:

- If G ≤ maxiter: Output results.

- If G > maxiter: Call Diffusion Process.

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 7
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Step 4: Diffusion Process

- Set MDN.

- Generate new particles, if MDN is reached.

- The new point will replace the current point.

- Identify the BP for this phase.

Step 5: Updating Process

The First Updating Process:

Rank point using Eq. (24).

- Generate a new point P ′
i (if Pai < ε), using Eq.

(28).

- The new point (P ′
i ) will replace the current point

(Pi). - Identify the BP for this process.

The Second Updating Process:

Rank particles using Eq. (27).

- Generate a new point P ′′
i (if Pai < ε), using Eq.

(29). - The new point (P ′′
i ) will replace the current

point (P ′
i ). - Identify the BP .

Step 6: Check process stop condition:

The BP is the optimal solution if the maxiter is
reached.

Otherwise, go to Step 3:.

Update Phase: Improve candidate solutions by em-
ploying random walks that allow for both local and
global search capabilities.

Selection: Evaluate the fitness of each candidate so-
lution and select the best ones to form the new popu-
lation.

Convergence Check: Repeat the diffusion and up-
date phases until convergence criteria, such as a pre-
defined number of iterations or an acceptable fitness
level, are met.

Exploration and Exploitation Balance: SFS ef-
fectively balances exploration (global search) and
exploitation (local search) through its dual-phase
methodology, enhancing its ability to find the global
optimum. SFS can handle large-scale optimization
problems due to its inherent scalability and adaptabil-
ity to different problem sizes.

The iterative nature and extensive exploration mech-
anisms, like Levy flights, can be computationally ex-
pensive, especially for very large problems. The perfor-
mance of SFS can be sensitive to its parameter settings,
such as the step size in Levy flights and the fractal di-
mension, requiring careful tuning. Implementing SFS
can be more complex compared to traditional optimiza-
tion algorithms, necessitating a deeper understanding
of fractal mathematics and stochastic processes.

(a) The first update process.

(b) The second update process.

Fig. 6: The update processes of the SFS algorithm [36].

4. Numerical Results

Wind farm data is very important to the problem
of determining the optimal location of turbines in
a wind farm to reduce wake-up effects and achieve
maximum generating capacity. The wind farm pro-
posed in this paper is an onshore wind farm, refer-
enced from the WAsP workspace sample, filename Ver-
sion8Windfarm.wh [25]. The wind farm is a complex
terrain with elevations ranging from 146.7m to 350m.
The average wind speed of the project is 7.25m/s and
the average wind energy density is 388 W/m2. The
goal of the problem is the optimization of wind farm
layout for each proposed turbine type so that the en-
ergy power output and the power factor of the wind
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farm is the best, thereby proposing the selection of the
appropriate turbine.

Tab. 2: Input parameters.

Input parameters
Roughness (Z0) 0.083

Wind velocity in free flow (V0) 7.25m/s
Hub height (h) 50m

Wind Farm dimension 3200m x 4200m
Thrust coefficient (Ct) 0.75

Wind density 388W/m2

This paper proposes to select 3 types of wind tur-
bines arranged on the same wind farm to determine
the optimal layout and select the appropriate type of
turbine. Case studies are summarized in the following
Table 3.

Among these parameters, SFS is sensitive to MDN.
The research results show that the diffusion number
can affect the performance of the problem, and de-
pends on the optimization problem. Some research
results show that some functions of the problem are
significantly improved when increasing MDN. However,
increasing MDN will affect the convergence time and
convergence speed of the problem, so it needs to be
consider [36].

S.Walk is a diffuse walk and an optional parameter.
(S.Walk = 0 for the first Gaussian walk and simple
problems. S.Walk = 1 for the second Gaussian walk
and hard problems).

The control parameters of the mentioned algorithm
used in case studies are given according to Table 3.

The energy produced by the wind farm is greatly
affected by wind speed and wind direction. Specify
the wind speed level to shut down the turbine as below
3m/s or above 25m/s [37]. The direction of the turbine
must be perpendicular to the wind direction to receive
maximum wind energy [38]. The wind atlas in the
project area is calculated based on long-term corrected
wind measurements taking into account the effects of
obstacles, roughness, and terrain elevation. Below is
the wind data of the project area referenced from the
WAsP software [25] as shown in Figure 7.

Figure 7 shows the prevailing wind direction of the
project area with an angle from 2700 to 3000. A sim-
plified wind rose is used, which is divided into 2 sectors
(sectors 10 and 11). The highest probability occurs at
a wind speed of 7.25m/s, accounting for about 12%.

The case studies using the same data source from the
WAsP software library. The terrain is complex and the
altitude varies from 146.7m to 350 m.

Fig. 7: The wind rose and wind speed distribution.

4.1. Case study 1

Case study 1 considers the optimal arrangement for 11
wind turbines, turbine capacity is 0.85MW. The results
of the optimal arrangement of turbines in the wind
farm by the SFS algorithm will be compared with the
results calculated by the PSO algorithm and the sim-
ulation results by the windPRO software.

A comparison of the convergence curves of the best
fitness values obtained from the SFS and PSO algo-
rithm is shown in Figure 8. This graph gives informa-
tion the convergence curve of SFS and PSO algorithms.
It is clear that the SFS algorithm has reached stability

Fig. 8: The convergence curves of SFS and PSO.

© 2025 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 9



NGUYEN, K. D. et al. VOLUME: 23 | NUMBER: 1 | 2025 | MARCH

Tab. 3: Case studies of optimization of wind farm layout

Case Studies Case Study 1 Case Study 2 Case Study 3
Wind farm capacity 9.35 MW 11 MW 16.5 MW

Wind turbine 11x0.85 MW 11x1 MW 11x1.5 MW
Shape of wind farm Fixed Fixed Fixed

Vcut in 4 m/s 4 m/s 4 m/s
Vcut out 25 m/s 25 m/s 25 m/s

Data Source WASP Software WASP Software WASP Software
Start Point 11 11 11

Maximum_Generation 100 100 100
Maximum_Diffusion 2 2 2

S.Walk 0.5 0.5 0.5

Fig. 9: Result of all algorithms.

around the 500th generation. Furthermore, the assem-
bly speed of the SFS algorithm is faster than that of
the PSO algorithm.

Figure 9 shows a comparison of the wind farm lay-
outs of the methods. The positions of the turbines
are different for the methods, annotated with different
shapes and colors as shown in this figure. The turbines
are installed in the wind regions with the highest wind
energy density and the arrangement of the turbines en-
sures avoidance wake effect.

The wind farm layout calculated by SFS, PSO, and
windPRO algorithms were recalculated by WAsP, and
the results are presented in Table 4. The comparison of
the AEP nets of the algorithms in Table 4 shows that
optimizing the wind farm layout by SFS is the best.
The net AEP calculated by SFS is 29.577 GWh, which
is 0.282 GWh higher than windPRO, and 0.302 GWh
higher than PSO. Besides, the wake loss calculated by
the SFS algorithm is 0.72%. This value is lower than
the wake loss calculated by windPRO and PSO, they
are 1.82% and 0.76%. On the other hand, the wind
farm efficiency achieved by SFS is 36.11% higher than
other methods. It is 0.34% higher than windPRO soft-
ware and 0.37% PSO. The capacity factor by wind-
PRO and PSO specifically is 35.77% and 35.74%. The

Fig. 10: Result of the arrangement of turbines by PSO.

comparison results show that the SFS algorithm gives
approximate calculation results with commercial soft-
ware.

Tab. 4: Result of wind farm layout optimization based on
WASP for Case study 1.

Methods WASP windPRO PSO SFS
Gross
AEP

[GWh]
27.754 29.839 29.500 29.790

Net AEP
[GWh] 27.538 29.295 29.275 29.577
Wake

loss [%] 0.778 1.820 0.760 0.720
Capacity
factor [%] 33.62 35.77 35.74 36.11

Figures 10 and 11 show the arrangement of turbines
in wind farm by PSO algorithm and SFS algorithm.
The proposed algorithm gives results on wind farm lay-
out similar to the results of commercial software. The
turbines are located where the wind density is highest
and the wake effect is minimized to ensure maximum
energy production.
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Fig. 11: Result of the arrangement of turbines by SFS.

Fig. 12: Convergence curve.

4.2. Case study 2

Similar to Case Study 1, Case Study 2 presents an opti-
mal wind farm layout for 11 turbines, turbine capacity
is 1 MW. The results of the optimal arrangement of
turbines in the wind farm by the SFS algorithm will
be compared with the results calculated by the PSO
algorithm and the simulation results by the WindPRO
software.

Figure 12 provides information about the compari-
son of the convergence curves of the best fitness values
obtained from the SFS and PSO algorithm. Similar
to case study 2, the SFS algorithm reaches stability
around the 600th generation and the convergence speed
is faster than that of the PSO algorithm.

Figure 13 shows the arrangement of turbines of the
methods on the same project area. The location of
the turbines is different for the methods, which are
annotated with different shapes and colors.

Table 5 gives information about the optimization re-
sults of wind farm layout by SFS, PSO, windPRO algo-
rithms and have been recalculated by WAsP. It is clear
that optimizing wind farm layout by SFS is the best.

Fig. 13: Result of all algorithms.

It is superior in all parameters such as Gross AEP, net
AEP, performance, and wake loss.

Tab. 5: Result of wind farm layout optimization based on
WASP for Case study 2

Methods WASP windPRO PSO SFS
Gross
AEP

[GWh]
27.898 30.308 30.102 30.322

Net AEP
[GWh] 27.802 29.910 29.937 30.166
Wake

loss [%] 0.345 1.316 0.550 0.510
Capacity
factor [%] 28.85 31.04 31.07 31.31

The Gross AEP of SFS is higher than that of PSO
and windPRO algorithms at 0.22G Wh and 0.014
GWh. The net AEP given by SFS is 30.0166G Wh,
which is 0.256 GWh higher than windPRO and 0.229
GW higher than PSO. In addition, the final loss calcu-
lated by SFS is 0.51%, which is lower than the other
methods as shown in Table 5. Furthermore, the capac-
ity factor applied by SFS is 31.31%, which is higher
than the other two methods. Wind farm efficiency
given by SFS is 0.27% higher than windPRO software
and 0.24% higher than PSO. The analysis results show
that the SFS algorithm gives the same result as com-
mercial software.

Figures 14, and 15 provide information about the
wind farm layout results using PSO and SFS. The tur-
bines are installed where the wind density is highest,
and the turbine placement ensures minimal wake ef-
fects. The result of turbine layout according to the
SFS algorithm is similar to commercial softwares as
shown in Figure 13.
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Fig. 14: Result of the arrangement of turbines by PSO.

Fig. 15: Result of the arrangement of turbines by SFS.

4.3. Case study 3

In this case, it is proposed to use 11 wind turbines,
each with a capacity of 1.5 MW as shown in Table 3.
The calculation methods are similar to those in Case
Studies 1 and 2. The results are presented in Table 6.

Figure 16 shows the convergence characteristics of
the best fit values of the SFS and PSO algorithms.
This figure shows that the convergence curve of the SFS
algorithm has reached its stability around the 500th
generation and is better than that of PSO software.
Moreover, the convergence speed of the SFS algorithm
is much faster than that of the PSO algorithm.

Figure 17 gives information about the comparision
the wind farm layout of the proposed methods. The
results of the turbine layout of the methods are differ-
ent, which are annotated with different shapes and col-
ors on the diagram. The wind turbines are located in
the wind regions with the highest wind energy density
and the arrangement of the turbines ensures avoidance
wake effect.

Tab. 6: Result of wind farm layout optimization based on
WASP for Case study 3

Methods WASP windPRO PSO SFS
Gross
AEP

[GWh]
41.110 44.66 43.76 44.657

Net
AEP

[GWh]
40.901 44.28 43.52 44.416

Wake
loss
[%]

0.508 0.850 0.550 0.540

Capacity
factor
[%]

28.30 30.64 30.11 30.73

Fig. 16: Convergence curve.

Table 6 is a comparison of parameters such as Gross
AEP, net AEP, wake loss, and performance of the
methods. Similar to Case study 2, this case also shows
that optimizing wind farm layout by SFS is the best
compared to windPRO and PSO. Table 6 shows that
the parameters performed by SFS such as Gross AEP,
net AEP, performance, and wake loss are all better
than the other methods. The total AEP, net AEP,
and capacity factor obtained by SFS are 44,657GWh,
and 30.73%, all of which are higher than windPRO and
PSO. On the other hand, wake loss is lower by 0.54%.
The comparison results show that the proposed algo-
rithm gives the same results as commercial software.

Figures 18, and 19 are the results of the wind farm
layout by PSO, and SFS algorithms. The wind tur-
bines are located where the wind density is highest,
and the turbine placement ensures minimal wake ef-
fects. The results of turbine layout according to the
SFS algorithm are similar to commercial software and
are shown in Figure 17.
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Fig. 17: Result of all algorithms.

Fig. 18: Result of the arrangement of turbines by PSO.

4.4. Discussion

Table 6 shows the average and standard deviation of
the methods for the proposed case studies. This result
shows the superiority of convergence time and stability
of the proposed algorithm to find the optimal results.
This shows that the SFS algorithm is an appropriate
algorithm to solve wind farm layout optimization prob-
lems.

According to case studies analyzed above, it is shown
that optimally using the SFS algorithm gives the best
results and is best suited to the wind farm model.
Therefore, the SFS algorithm is suitable to apply to
the optimization problem of wind farm layout and the
criterion for selecting the appropriate type of turbine
for the wind farm is a high capacity factor.

To determine the type of turbine for the wind farm,
the capacity factor (CF) of the wind farm is considered.
From the analyzed cases above and Table 8, it is shown
that the capacity factor of the wind farm using 850 kW
turbine is the highest (36.239%) compared to 1000 kW
turbine (CF = 31.19%) and 1500 kW turbine (CF =

Fig. 19: Result of the arrangement of turbines by SFS.

30.72%). Therefore, using 850 kW turbines is the most
optimal for this wind farm layout.

The simple explanation for this result is that the
rated capacity of the turbines is achieved at wind
speeds of 15 m/s or more, while the highest proba-
bility distribution of wind speed is from 3 to 10 m/s.
In the range of 3-10 m/s, the capacity of all 3 types
of turbines is quite different, the capacity is much dif-
ferent only at wind speeds of about 12 m/s or more.
Therefore, the CF of the 850 kW turbine will be higher
than that of the other cases.

The Stochastic Fractal Search algorithm has many
advantages for wind farm layout optimization prob-
lems such as: SFS has the ability to find the global
optimum for complex, multi-modal optimization prob-
lems. SFS’s search space is wide using self-similarity
and randomness, making it less likely to get stuck in lo-
cal optima. SFS is a flexible algorithm that can be ap-
plied to many different types of optimization problems,
including continuous optimization, discrete optimiza-
tion, and combinatorial optimization. The stochastic
and self-similar aspects of SFS make it a powerful al-
gorithm that can handle noisy or uncertain objective
functions. However, SFS also has some limitations that
need to be improved such as: SFS can be limited for
extremely multi-dimensional or complex problems, it
may require a significant number of iterations to reach
an acceptable solution. Like many meta-heuristic algo-
rithms, SFS may require tuning of specific parameters
such as fractal patterns, and finding the right param-
eters for a particular problem can be time-consuming
and SFS performance can be sensitive to the initial so-
lution. To address this drawback, a combination of
Lévy flight and Gaussian walk is proposed. Unlike
traditional optimization methods, SFS’s use of frac-
tional order dynamics provides a superior balance be-
tween exploration (global search) and exploitation (lo-
cal search), leading to more efficient and effective op-
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Tab. 7: Result of the average and standard deviation from case studies

Methods
Case studies Case Study 1 Case Study 2 Case Study 3

windPRO

Avg. 29.295 29.858 44.282
Std. 0 0 0

Min value 29.295 29.858 44.282
Max value 29.295 29.858 44.282

SFS

Avg. 29.448 30.056 44.316
Std. 0.058 0.086 0.104

Min value 29.352 29.858 44.039
Max value 29.577 30.166 44.416

PSO

Avg. 29.057 29.518 43.275
Std. 0.143 0.250 0.239

Min value 28.768 29.114 42.908
Max value 29.275 29.937 43.520

timization. The results of 3 case studies show that the
convergence of SFS is better than the PSO algorithm.

The PSO is relatively easy to understand and imple-
ment. It requires fewer parameters to adjust compared
to other meta-heuristic algorithms. However, PSO
can suffer from premature convergence, where particles
converge to a local optimum rather than the global op-
timum, especially in complex, high-dimensional search
spaces. The performance of PSO heavily depends
on the proper tuning of its parameters, such as iner-
tia weight, cognitive coefficient, and social coefficient.
PSO might not scale well with very large problems, as
the computational cost increases with the number of
particles and iterations required for convergence [40].

The windPRO is widely recognized and accepted in
the industry for wind farm design and optimization.
It offers a wide range of modules for different aspects
of wind farm planning, including resource assessment,
layout optimization, and environmental impact analy-
sis [26]. On the other hand, windPRO is a commercial
software that can be expensive, limiting its accessibil-
ity to smaller developers or research institutions with
limited budgets. The accuracy of windPRO’s outputs
is highly dependent on the quality and resolution of the
input data. Inaccurate wind resource data or terrain
models can lead to suboptimal designs.

5. Conclusion and Future
Work

In this paper, the SFS algorithm is introduced to ad-
dress the optimization problem of turbine placement
in a wind farm. In the considered problem, the annual
energy output calculation model is used to select the
type of turbine suitable for terrain conditions, wind
data, and wake effects. A mathematical model is in-
troduced to calculate the wake effect for the problem

of wind turbine energy production, and proven for ac-
curate and efficiency. The results are compared with
the widely used algorithm (PSO) and the commercial
software (windPRO), which shows that the SFS algo-
rithm is suitable for the optimization of the wind farm
layout. The optimal layout of the wind farm using
SFS is close to that of windPRO software. Three case
studies with different types of turbines are proposed
to further verify the performance and reliability of the
algorithms.

The Stochastic Fractal Search algorithm offers a
promising optimization technique with several advan-
tages, making it suitable for various optimization tasks
across different domains. It explores the search space
efficiently by randomly exploring regions and exploit-
ing promising areas through local searches, leading to a
more thorough exploration of the solution space. Due
to its stochastic nature, SFS is robust against getting
stuck in local optima. It can escape from local op-
tima by employing random perturbations and diver-
sification strategies, enabling it to continue searching
for better solutions. On the other hand, SFS exhibits
favorable convergence properties, often converging to
near-optimal solutions within a reasonable number of
iterations. In future research, we aim to investigate
the correlation between the arrangement of wind tur-
bines using a multi-objective function and the asso-
ciated costs of this optimization. We will also focus
on introducing further improvements to the SFS al-
gorithm, utilizing approaches suggested in references
[41, 42, 43, 44].
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